Environmental impacts
of Artificial Intelligence

Cours Intelligence Artificielle et Environnement
Master MVA

Anne-Laure Ligozat LASN

LABORATOIRE INTERDISCIPLINAIRE
DES SCIENCES DU NUMERIQUE




Al?

Machine Learning

<

D] X




Context



Environmental context
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Environmental context
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Why Al?

potential high environmental impacts:

e massive data
e computation demand

often presented as a solution

... without considering its
negative impacts

Training compute (FLOPs) of milestone Machine Learning systems over time
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(Sevilla et al., 2022)



Al as a solution?

Work on prospective studies (Bugeau & Ligozat, 2023)
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Al as a solution?

-4.0% GHGs

(-2.4Gt)

How Al can enable a
Sustainable F

B8 Microsoft 2019 pw%

«Al can enable our future systems to be
more productive for the economy and for
nature. This supports the proposition that
we can use Al to help ‘decouple’
economic growth from GHG emissions.»

In 2030, using Al for climate
control could help reduce

2.6t0 5.3

gigatons

of GHG emissions,
or 5% to 10% of
the total

Source: BCG analysis. 2021



https://www.bcg.com/publications/2021/ai-to-reduce-carbon-emissions
https://www.pwc.co.uk/sustainability-climate-change/assets/pdf/how-ai-can-enable-a-sustainable-future.pdf

Al as a solution?

STUDY @SN
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The role of Artificial
Intelligencein the
European Green Deal

2021

«Artificial Intelligence (Al) can be deployed for a wide range

of applications to promote the goals of the European Green

Deal. However, adverse environmental impacts of Al could
jeopardise the attainment of these goals.»

ipcc

climate change

Climate Change 2022
Mitigation of Climate Change

Technical Summary

(....) artificial intelligence can improve energy
management in all sectors, increase energy
efficiency, and promote the adoption of many
low-emission technologies, including
decentralised renewable energy, while creating
economic opportunities. However, some of
these climate change mitigation gains can be
reduced or counterbalanced by growth in
demand for goods and services due to the use
of digital devices.


https://www.europarl.europa.eu/RegData/etudes/STUD/2021/662906/IPOL_STU(2021)662906_EN.pdf
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«Tackling Climate Change with Machine Learning» (Rolnick et al., 2019)
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Figure 2: Selected strategies to mitigate GHG emissions from transportation using machine learning.



«Tackling Climate Change with Machine Learning» (Rolnick et al., 2019)
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Environmental impacts of Al



First, second and third order impacts of Al
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First-order impacts



Bottom-up approach

on a server, what is the additional energy use due to the Al program running:

e processor
o GPU
e memory...

=> footprint, = (use ) X electricity carbon intensity

X

resource

kWh — kg CO,,e




France: 101g CO2e/kWh
(86% low carbon, 13% RenE)

Carbon intensity of electricity Poland: 9279 CO2e/kWh

(13% low carbon, 13% RenE)

[#) electricityMap Live  Openours  Blog  4Fl

praduTion  ceasemmetion 1

®©
p
*
Norway: b ' 4
229 CO2e/kWh
(100% low carbon & RenE) »
restre () o 9 0 K0 e fo:

source: electricityMap
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https://app.electricitymap.org/map

Temporal evolution of the carbon intensity

€CO-omix - Les émissions de CO; par kWh produit en France @




Influence of the carbon intensity on the operational carbon
footprint
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Figure 4. Estimated carbon emissions (gCOzeq) of training
our models (see Appendix B) in different EU-28 countries.
The calculations are based on the average carbon intensities
from 2016 (see Figure 8 in Appendix).
(Anthony et al., 2020)



Serveur energy use

not proportional to the charge

variation in time, with models...
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How to measure energy use?

hardware

software

cc:\ge
CARBDN

(hﬁkﬂ?“g&hﬂ%%é

Towards environmentally sustainable computational science

20



Hardware vs software

Power (Watts)
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Electricity consumption in Jean Zay

Jean Zay electricity use

infra mode -
computation nodes off, but network, storage etc. on

idle mode

etc on but no job running

production mode

0 50 100 150 200

kWh




Evaluating the carbon footprint of an Al service

Which equipment?

Electricity grid

Power line
& backup

\Data center building

@—

Transformer UPS

Backup generator

]
]

= (11001 4 — W V1T
Cparasr L | Geuvneve ¥ ]
1 — .'.l
n anzavee] : : SIS w
""""""""" Cooling =~ Network
Network
Fuel tank Compute Storage systems Badkbare

source : B. Davy via B. Petit
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Other energy use

Average electricity consumption in datacenters

@ ITroom @ Electrical losses @ Air conditioning

¢ Physical machines

@ Network devices

@ Other

@ Motherboard @ Peripheral
@® Memory @ CPU

@ Disk

Source: (Guyon, 2018)
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Efficiency of the facility

PUE =

total facility energy

IT equipment energy

/Other equipment \

IT equipment
cooling
lighting...
servers for
computation &
k Ctorage. . J

=> footprint2 = footprint1 x PUE

25



Tools for carbon footprint estimation _ e

N

Many factors influence the carbon e

footp rl nt Of th | S p h ase Detalls aboutyour agortm &y e " o

Carbon footprint Energy needed

Runtime (hours and
minutes)

e model, data... — . 5| @ & =

113 tree-months 5.91km 2%
Select the platform used for the Carbon sequestration in a passenger car of a flight Paris-London

e energy efficiency of the data center ==
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Comparison of several tools
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Fig. 2: Total energy consumed by the benchmarks as reported
by the power meters. Tools: PowerAPI (PA), Scaphandre
(SC), Energy Scope (ES). Perf (PE), Carbon Tracker (CT),
Code Carbon (CC), Experiment Impact Tracker (EIT), Green
Algorithm (GA), ML CO2 Impact (MCI)

source: (Jay et al., 2023)




Al: which tasks?

equipment
(hard drives...

Data storage

Data acquisition

Data processing

equipment
(sensors...)

equipment
(computers...)

Training

) }
H Inference

equipment
(servers...)

equipment
(smartphones...)
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Training vs inference (Wu et al., 2021)

Operational Carbon Footprint of Large-Scale ML Tasks
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Life Cycle Assessment

o

r r
pollutions (air, soil, water)

| : .
50 o 8 o &

resources

schema from Jacques Combaz 30



Composition of a smartphone

Grammes Milligrammes Milligrammes
35 - _ [ 600 - B 14
Praséodyme (Pr); 6,1~ Autres; 13,0 T
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\_ """ — s z T
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Source: report from French Sénat on smartphones



https://www.senat.fr/rap/r15-850/r15-8501.html

Metal recovery

1. Réalités des filieres minérales

Processus de récupé n du métal laborie

CONCENTRATION
ou traitement du
minerai
EXTRACTION
CHIMIQUE

ou métallurgie

RAFFINAGE

Minerai :
0,422%Cu

3. Pour un changement de paradigme
[ 3.3. Renouveler notre modéle de développement ]

c, (‘mnh\ Cephas - 2013 - cc by-sa 3.0 Blister (pyromét.) : Cathode : 99,99 %
Chalcopyrite, m Ball USA | Rob Lavinsky, IRocks.com - 2010 - cc by-sa 3.0 B
Blister de cuivre, Svyatogor JSC, Russie | Dogad75 - 2016 - cc by-sa 4.0 98 2 99,5%

Cathodes de cuivre en Zambie | mm-j - 1999 - cc by-nc 2.0

Ruée miniere au XXIé siecle : jusqu'ou les limites
seront-elles repoussées ? - Aurore Stephant at USI



https://youtu.be/i8RMX8ODWQs
https://youtu.be/i8RMX8ODWQs
https://youtu.be/i8RMX8ODWQs

Raw material availability

Durée de vie des réserves rentables (en années d'exploitation)

En cas de hoom (demande accrue de 10% pendant dix ans)
Aurythme actuel de production

Antimoine -
Etain %y
Plomb -18
Or «]
Zinc -
Strontium &
Argent -2
Nickel -
Tungsténe 5
Bismuth -
Cuivre %
Bore 4
Fluorite 5
Manganése o
Sélénium &
Rhénium =4
Cobalt ol
Minerai de fer -
Molybdéne ?
Rutile 2
Bauxite -107
Potasse 25
liménite -1
Platinoides *
Graphite s
lode i
Vanadium - 250
Phosphates - 261
Magnésium o
Lithium
0 50 100 150 200 250 300 350

400

SOURCES : MCKINSEY; USGS ; DERA




u Global e-wast
collected and

properly

recycled®

Globél e-waste flows that are not
documented
n

82.6% | 44.3 Mt . 43.7 Mt
2 ‘
L

e documented to be

N

17.4% ] 9.3 Mt

Source : Global E-wasteMonitor 2020 . 0.6 Mt

...............................................................................

of e-waste is unknown; this e-waste is
likely dumped, traded, or recycled in a
non-environmentally sound way

is estimated to end up in waste bins in EU
countries




Informal recycling

FN

= = P

Dumping and processing of electronic waste in
Agbogbloshie, Accra, Ghana

source : By Muntaka Chasant - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=81939788



Top down approach at GRICAD

Servers carbon footprint

@ Computation servers - production @ Computation servers - usage
Other servers - usage @ Other servers - production

Source: (Berthoud et al., 2020)
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Life cycle assessment of Al systems

(Luccioni et al, 2023)

CO:zemissions | Percentage of

Process . e
(COzeq) total emissions
Embodied emissions 11.2 tonnes 22.2 %
a BigScience initiative Dynamic consumption | 24.69 tonnes 48.9 %

Idle consumption 14.6 tonnes 28.9 %
B m Total 50.5 tonnes 100.00%

Table 3: Breakdown of CO, emissions from different sources of the BLOOM model life cycle

176B params - 59 languages - Open-access

e Methodology for estimating the carbon footprint of the Jean Zay
infrastructure

e Estimation of the carbon footprint

o for training the model, including idle consumption & embodied emissions
o forinference



Integrating life cycle aspects in environmental evaluation

Life cycle phase considered Multiple e
Qutil Uti. impacts T GPU support
Ext. | Man. | Tra. it ] B Bol.. | osseeie s |/ consumption
Green Algorithms | X X X v v X X v v
ML CO; Impact X X X X v X X v v
CarbonTracker X X X v v X X X v
CodeCarbon X X X v v X X X Vv
Boavizta v v X X X X v X

source: (Morand, 2023)



Integrating life cycle aspects in environmental evaluation

ADP GWP PE Hur.n.an Water -
toxicity | Consumption

Extraction v v v X X X

Manufacturing v v v X X X

Transport X X X X X X

Usage v v v X X X

End of Life X X X X X X

PARIS 2015
Modeling graphics Manufacturing Infrastructure Putting impacts in
card impacts attribution consumption perspective

source: (Morand, 2023)



Environmental impacts
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Figure 3: Distribution of BC-1 environmental impacts by life cycle phase?

Source: European
commission, 2015



https://www.eceee.org/static/media/uploads/site-2/ecodesign/bio_entr_lot_9_task_5_fv_20150731.pdf
https://www.eceee.org/static/media/uploads/site-2/ecodesign/bio_entr_lot_9_task_5_fv_20150731.pdf

Results for BLOOM training

)

http://calculator.green-algorithms.org/

training BLOOM
e GWP: 59tCO: eq

e annual emissions of 59 person (PBgwr)
e annual emissions of 29 person (SNBC)

e ADP: 1.2 kgSb eq

e annual resource extraction of 38
person (PBapr)

e PE: 9800000 MJ



Carbon footprint of ICT in 2020 (Freitag et al, 2021)

B
4,000 3,634
(0]
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2020 minimum 2020 maximum Best case Expectedcase @ Worst case

mUser devices mData centres ®mNetworks ®TVs



Proportional breakdown of ICT's carbon footprint,
excluding TV (Freitag et al, 2021)

A B

Embodied
30,0%

Networks,
22% User
devices,
37%

User
Networks, devices

35% 32%

Data
centres,
41%

Data
centres,
33%

Use Phase
70,0%

(A) Andrae and Edler (2015): 2020 best case

Networks, (total of 623 MtCO,e).
24%

User devices,

Data 57% (B) Belkhir and Elmeligi (2018): 2020 average

S (total of 1,207 MtCO,e).

(C). Malmodin (2020): 2020 estimate (total of
690 MtCO,e).




Projections of ICT's GHG emissions from 2020 (Freitag et

al, 2021)

Greenhouse Gas Emissionsin GtCO2e

5.50

5.00

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040

Belkhir & EImeligi (2018) - Minimum exponential Belkhir & EImeligi (2018) - Maximum exponential
------- Belkhir & Elmeligi (2018) - Minimum linear «+++=-« Belkhir & EImeligi (2018) - Maximum linear

——Andrae & Edler (2015) - Best case Andrae & Edler (2015) - Expected case



Second and third-order impacts



direct impacts

indirect impacts

Indirect impacts

lower fuel consumption

optimize traffic flow?

priority to systems with
significant impacts?

use of new connected objects,
Sensors...

rebound effect

smoother traffic flow => time
savings => greater distance from
home => urban sprawl

path dependency
prolongs current system, vs. public
transport, active mobility...
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Carbon footprint of the ICT sector(s)

Kaya-like relative factor decomposition:
CO, footprint = Population x Technology Affluence
x Energy Intensity x Carbon Intensity

Log
A T
/' Positive
*  CAGR
2*00"-‘){“‘\t
Population

source: Bol, D., Pirson, T., & Dekimpe,
R. (2021). Moore's Law and ICT
Innovation in the Anthropocene. In
2021 Design, Automation & Test in
Europe Conference & Exhibition
(DATE). IEEE.

Carbon intensity of energy

(a) CAGR

> Time




Structural effects

Our societies are dependent on digital technology

How do we adapt to climate change and resource depletion?

Case of storm Alex in the Alpes-Maritimes

Numerous communes in the valleys without
water or electricity, without road or rail links,
and without telephone communications
(mobile, copper and fiber-optic sites having
been affected).

source: Orange



Infrastructure resilience

Q
a g R 5 O
Table 2 — Network infrastructure risk qualification test & &\o“ & &
Q. o"& &\0 & 0’%0 0960
O < & & & & &
s _@ o"Q 09 &o &o
& & F & 2858
< @ & FFES
CLIMATE RELATED HAZARDS
Trends 2 | T [52) B i
Heat waves, fires and drought 2 g & | 2] a
n, high wate:
Extremes = & & o o E
High winds and storms | | s} | o e
Note: the qualitative assessment is based on interviews conducted for the study (including RTE, Enedis, SNCF Réseau, Cerema and Vinci Autoroutes). The
colour represents the intensity of the physical risk (green when vulnerability is limited, red when it is high).
Summary: The physical risk to transport infrastructure from high winds and storms is considered to be limited, and the increase in average temperature has
been anticipated for electricity infrastructure (green boxes). Flooding poses risks of structural deformation or even failure of transport network infrastructures
(red boxes). Heat waves pose significant risks to the operation of air-conditioning systems for strategic active equipment in telecommunications networks
(boxes in red).
Source: France Stratégie




In ML/NLP??



Equipment Life
cycle

Al
tasks

Impact Indicators

What is presently assessed

types

Ioduction

End of life

User equipment

twork equipment

Data acquisition, processing
& storage

Resource depletion

Water consumption

Indirect impacts




Red vs Green Al (Schwartz et al., 2020)

Red Al

e improve accuracy rather than efficiency, through the use of massive computational power

while disregarding the cost
o even though relationship between model performance and model complexity is at best logarithmic

e Yyet valuable: contributes to what we know about pushing the boundaries of Al
but
= allow for more equitable comparisons, eg reporting training curves
= recognize Green Al work

Green Al

novel results encouraging a reduction in resources spent



Responsible Al?

Déclaration de Montréal

. @ (Dilnac et al., 2018)

IA responsable_

o Al systems and associated equipment must aim for maximum

energy efficiency and minimize the carbon footprint over their

entire lifecycle, as well as impacts on ecosystems and
biodiversity...

e Villani report (2018)

O

(...) Al can lead to numerous rebound effects. For example

Al can prevent us from rethinking our modes of growth,
consumption, and measurement of wealth produced, and instead
to consume just as much as before, if not more.

DONNER UN SENS
A LINTELLIGENCE
ARTIFICIELLE

£ STRATEGIE
NATIONALE ET EUROPEENNE

53



Environmental impacts of Al? (Strubell et al, 2019)

variety of state-of-the-art NLP models
software-based energy measurement
Training

e 12 hours to several weeks
e emissions: between 18kg CO2e and 284 t CO2e

e most used model: 652 kg CO2e, or
o one one-way flight from Paris to Hong Kong
o or 2 500km by car

sum GPU time ~ 60 GPU during 6 months



Precision vs CO2e (Parcollet et Ravanelli, 2021)

4 . L
—— CRDNN 10

S 3 |—— Transf. 3.38%
S —— RNN-T
2 5 || ® 50%co, 15.97% i ]
2 e 100% CO. 9
e)
O 19 18.64% i

() /== T T 0 ] T T

100 80 60 40 20 0 30 25 20 15 10 5 0
Word Error Rate % Word Error Rate %
CommonVoice FR (dev) LibriSpeech (dev-clean)

Figure 2: CO2 emitted in kg (in France) by different E2E ASR models with respect to the word error rate (WER) on the dev sets of

LibriSpeech and CommonVoice. The curves exhibit an exponential trend as most of the training time is devoted to slightly reduce the
WER. The black and red dots indicates the WER obtained with 50% and 100% of the emitted CO2. On LibriSpeech, 50% of the carbon
emissions have been dedicated to reach SOTA results with an improvement of 0.37%.
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Climate performance model card (Hershcovich et al, 2022)

Minimum card

Information Unit

1. Is the resulting model publicly available? Yes/No
2. How much time does the training of the final Time
model take?

3. How much time did all experiments take (incl. Time
hyperparameter search)?

4. What was the energy consumption Watt
(GPU/CPU)?

5. At which geo location were the computations  Location

performed?

Extended card

6. What was the energy mix at the geo location?

7. How much CO2eq was emitted to train the
final model?

8. How much CO2eq was emitted for all experi-
ments?

9. What is the average CO2eq emission for the
inference of one sample?

10. Which positive environmental impact can be
expected from this work?

11. Comments




What can | do (to reduce my carbon footprint) as a ML/AI
practioner?

Do you really need to

use ML/AI?
Yes No
Did you choose carefully your model, reduce
redundant computation, test your program etc? QL] T Gl
Yes No
Choose your facility according to Please do S0 beforeJrTlining of
PUE & carbon intensity for example U el

Done

Track your emissions and
disclose them

Done

Facilitate comparisons, share

codes and models

(Ligozat and Luccioni, 2021)



Google’s answer to (Strubell et al., 2019)

The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink
David Patterson'?, Joseph Gonzalez?, Urs Holzle', Quoc Le', Chen Liang’, Lluis-Miquel Munguia’,
Daniel Rothchild?, David So', Maud Texier', and Jeff Dean'

Best practices proposed:

e Efficient ML model

e Processors optimized for ML training
e Cloud pour better energy efficiency
e Location with the “cleanest” energy

and «Google's renewable energy purchases
further reduce the impact to zero»

but:

what about the life cycle?

o  recent processors = carbon footprint ./
what about inference?
«carbon free» energy and «net zero impact»?
potential carbon footprint if everything optimized,
but not actual one
focus on carbon footprint
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Decarbonization of energy?

Global primary energy consumption by source
Primary energy” is based on the substitution method® and measured in terawatt-hours®.
—| Other
renewables
160,000 TWh “ Modern biofuels
' — Solar
Wind
140,000 TWh Hydropower
Nuclear
—— Natural gas
120,000 TWh
100,000 TWh
80,000 TWh Qil
60,000 TWh
40,000 TWh
— Coal
20,000 TWh
__Traditional
0TWh biomass

1850 1900 1950 2000 2022

Data source: Energy Institute - Statistical Review of World Energy (2023); Smil (2017)
Note: In the absence of more recent data, traditional biomass is assumed constant since 2015.
OurWorldInData.org/energy. | CC BY




Environmental assessment of projects involving Al methods

Impacts of ICT equipment

O

O

Justification of the Al method

O

O

Impacts due to societal changes

O

O

material extraction, manufacturing, end of life

use: computation, data

nécessity of Al
resilience

reference scenario
potential indirect impacts

Proposal for a framework document

Environmental assessment
of projects involving Al methods

Coordination for Ecolnfo: Laurent Lefévre (LIP, INRIA, CNRS), Anne-Laure Ligozat
(Université Paris-Saclay, CNRS, ENSIIE, LISN), Denis Trystram (Université Grenoble Alpes,
Grenoble INP, CNRS, Inria)

Contributions: Sylvain Bouveret (Univ. Grenoble-Alpes, CNRS, Grenoble INP, LIG), Aurélie
Bugeau (Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI), Jacques Combaz (Univ. Grenoble
Alpes, CNRS, Grenoble INP, VERIMAG), Emmanuelle Frenoux (Université Paris-Saclay,
CNRS, Polytech Paris-Saclay, LISN), Gaél Guennebaud (Inria Bordeaux), Julien Lefévre
(Aix Marseille Univ., CNRS, INT, Inst Neurosci Timone), Jean-Philippe Nicolai (GAEL

https://hal.science/hal-03922093
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Back to Al to tackle climate change



Al for environmental applications

acts from Al use

m Al use

Positive impacts fro

at least with Life Cycle Assessment

taking into account as many indirect effects as possible
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Life cycle assessment of Al systems

(Ligozat et al, 2021)

Assessing the environmental impacts of an Al
system should at least include a Life Cycle
Assessment

How are Al for Green systems benefits
assessed?

o
2 A
8 production use end of life
£
£ ADP
s
% humtox
[
8 water
2 GWP
w - >

Life Cycle Phases

A(My|M;) = LCA(M,) — LCA(M,) € R4 (1

with:

* M, the reference application without using the Al service,

* M, the application enhanced by Al,

¢ LCA(x) a quantification of d types of environmental impacts (e.g., GHG emissions,
water footprint, etc.). The LCA methodology is described in Section 3.2. Note that
LCA(M3) includes the impacts of the Al service itself, i.e., LCA 4;(M>).



Evaluations in (Rolnick et al., 2019)

a. No mention of the

2.3 Elec Vehicles l
| environmental gain

ML

@ 3.1 Smart buildings —

71 Rolnick and al citations bH b. General mention of the
T N environmental gain

’2-“ Low carbon c. Afew words about the
= DL . environmental gain but no
quantitative evaluation or only
2.1 Modeling demand — indirect estimation
none%r dH d. Evaluation of the energy

B2 Freight L] gain without taking the Al pro-

gram into account



Biases of impact studies (Rasoldier et al., 2022)

Perimeter

e life cycle not taken into account: (Ligozat et al., 2021) for Al
e indirect (2nd and 3rd order) not taken into account: 5G

Hypotheses
e comparison to what reference scenario?
Disconnection from global scenarios

e minimal benefits + poorly managed uncertainties
e incompatibility between measures
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Example in the health sector

deaths due to the carbon footprint
lives saved thanks to and other environmental issues

health measures

- tablet a
Sante : PP
Technologies . +
Environnersant
climate change
+ g

Quels compromis ?
Conférence Comprendre et Agir -- health =

Valérie d'Acremont
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https://youtu.be/oKcy_cY0QOw
https://youtu.be/oKcy_cY0QOw

Conclusion

e Comprehensive evaluation of the environmental impacts remains a WIP

e But tools for partial evaluation of 1st order impacts exist and can easily be
used

e As well as guidelines for a discussion of 2nd and 3rd order impacts

e But be careful with partial indicators
e Need for discussion of the role of Al in a green transition
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