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Planetary boundaries, source: Wikipedia



Environmental context



Why AI?

(Sevilla et al., 2022)

potential high environmental impacts:

● massive data
● computation demand

often presented as a solution

… without considering its 
negative impacts



AI as a solution?
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Work on prospective studies (Bugeau & Ligozat, 2023)



AI as a solution?
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«AI can enable our future systems to be 
more productive for the economy and for 
nature. This supports the proposition that

we can use AI to help ‘decouple’ 
economic growth from GHG emissions.»

2019

2021

https://www.bcg.com/publications/2021/ai-to-reduce-carbon-emissions
https://www.pwc.co.uk/sustainability-climate-change/assets/pdf/how-ai-can-enable-a-sustainable-future.pdf


AI as a solution?
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(....) artificial intelligence can improve energy 
management in all sectors, increase energy 
efficiency, and promote the adoption of many 

low-emission technologies, including 
decentralised renewable energy, while creating 

economic opportunities. However, some of 
these climate change mitigation gains can be 

reduced or counterbalanced by growth in 
demand for goods and services due to the use 

of digital devices.

«Artificial Intelligence (AI) can be deployed for a wide range 
of applications to promote the goals of the European Green 
Deal. However, adverse environmental impacts of AI could 

jeopardise the attainment of these goals.»

2021

https://www.europarl.europa.eu/RegData/etudes/STUD/2021/662906/IPOL_STU(2021)662906_EN.pdf


«Tackling Climate Change with Machine Learning» (Rolnick et al., 2019)



«Tackling Climate Change with Machine Learning» (Rolnick et al., 2019)



Environmental impacts of AI



First, second and third order impacts of AI

(Kaack et al., 2021)



First-order impacts



Bottom-up approach

on a server, what is the additional energy use due to the AI program running: 

● processor
● GPU
● memory…

=> footprint1 = ∑ (useresource) x electricity carbon intensity
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kWh → kg CO2e



Carbon intensity of electricity

source: electricityMap

France: 101g CO2e/kWh
(86% low carbon, 13% RenE)

Poland: 927g CO2e/kWh
(13% low carbon, 13% RenE)

Norway: 
22g CO2e/kWh
(100% low carbon & RenE)
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https://app.electricitymap.org/map


Temporal evolution of the carbon intensity
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Influence of the carbon intensity on the operational carbon 
footprint

(Anthony et al., 2020)



Serveur energy use

not proportional to the charge

variation in time, with models…

Source: (Heinrich et al., 2017) 19



How to measure energy use?

hardware software
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Hardware vs software
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Electricity consumption in Jean Zay



Evaluating the carbon footprint of an AI service

Which equipment?
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Other energy use

Source: (Guyon, 2018)
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Efficiency of the facility

=> footprint2 = footprint1 x PUE 25

Other equipment

cooling
lighting…

PUE = total facility energy
IT equipment energy

IT equipment

servers for 
computation & 
storage…



Tools for carbon footprint estimation

Many factors influence the carbon 
footprint of this phase

● model, data…
● energy efficiency of the data center
● carbon intensity of the electricity



Comparison of several tools

source: (Jay et al., 2023)



AI: which tasks?
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Data acquisition

Data storage

Data processing Training Inference

equipment 
(hard drives…)

equipment 
(sensors…)

equipment 
(computers…)

equipment 
(servers…)

equipment 
(smartphones…)



Training vs inference (Wu et al., 2021)



Life Cycle Assessment
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resources

pollutions (air, soil, water)

schema from Jacques Combaz



Composition of a smartphone

Source: report from French Sénat on smartphones

https://www.senat.fr/rap/r15-850/r15-8501.html


Metal recovery

Ruée minière au XXIè siècle : jusqu'où les limites 
seront-elles repoussées ? - Aurore Stephant at USI

https://youtu.be/i8RMX8ODWQs
https://youtu.be/i8RMX8ODWQs
https://youtu.be/i8RMX8ODWQs


Raw material availability



E-waste

Source : Global E-wasteMonitor 2020



Informal recycling

Dumping and processing of electronic waste in 
Agbogbloshie, Accra, Ghana

source : By Muntaka Chasant - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=81939788



Top down approach at GRICAD

Source: (Berthoud et al., 2020)
36



Life cycle assessment of AI systems

(Luccioni et al, 2023)

● Methodology for estimating the carbon footprint of the Jean Zay 
infrastructure

● Estimation of the carbon footprint 
○ for training the model, including idle consumption & embodied emissions
○ for inference



Integrating life cycle aspects in environmental evaluation

source: (Morand, 2023)



Integrating life cycle aspects in environmental evaluation

source: (Morand, 2023)



Environmental impacts

Source: European 
commission, 2015

https://www.eceee.org/static/media/uploads/site-2/ecodesign/bio_entr_lot_9_task_5_fv_20150731.pdf
https://www.eceee.org/static/media/uploads/site-2/ecodesign/bio_entr_lot_9_task_5_fv_20150731.pdf


Results for BLOOM training



Carbon footprint of ICT in 2020 (Freitag et al, 2021)



Proportional breakdown of ICT's carbon footprint, 
excluding TV (Freitag et al, 2021)

(A) Andrae and Edler (2015): 2020 best case 
(total of 623 MtCO2e).

(B) Belkhir and Elmeligi (2018): 2020 average 
(total of 1,207 MtCO2e).

(C). Malmodin (2020): 2020 estimate (total of 
690 MtCO2e).



Projections of ICT's GHG emissions from 2020  (Freitag et 
al, 2021)



Second and third-order impacts



Indirect impacts

46

optimize traffic flow?

lower fuel consumption

rebound effect
smoother traffic flow => time 
savings => greater distance from 
home => urban sprawl

use of new connected objects, 
sensors…

path dependency
prolongs current system, vs. public 
transport, active mobility...
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priority to systems with 
significant impacts?



Carbon footprint of the ICT sector(s)

source: Bol, D., Pirson, T., & Dekimpe, 
R. (2021). Moore's Law and ICT 
Innovation in the Anthropocene. In 
2021 Design, Automation & Test in 
Europe Conference & Exhibition 
(DATE). IEEE.



Structural effects

Our societies are dependent on digital technology

How do we adapt to climate change and resource depletion?

Case of storm Alex in the Alpes-Maritimes

Numerous communes in the valleys without 
water or electricity, without road or rail links, 
and without telephone communications 
(mobile, copper and fiber-optic sites having 
been affected).

source: Orange



Infrastructure resilience



In ML/NLP?



Direct impacts

Carbon footprint

InferenceTraining

Data centerNetwork equipment

UsageProduction

What is presently assessed

End of life

User equipment

Data acquisition, processing  
& storage

Resource depletion Water consumption …

Indirect impacts
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Red vs Green AI (Schwartz et al., 2020)

Red AI

● improve accuracy rather than efficiency, through the use of massive computational power 
while disregarding the cost

○ even though relationship between model performance and model complexity is at best logarithmic
● yet valuable: contributes to what we know about pushing the boundaries of AI

but

⇒ allow for more equitable comparisons, eg reporting training curves

⇒ recognize Green AI work

Green AI

novel results encouraging a reduction in resources spent



Responsible AI?

●                                         (Dilhac et al., 2018)

○ AI systems and associated equipment must aim for maximum 
energy efficiency and minimize the carbon footprint over their 
entire lifecycle, as well as impacts on ecosystems and 
biodiversity...

● Villani report (2018)
○ (...) AI can lead to numerous rebound effects. For example

AI can prevent us from rethinking our modes of growth, 
consumption, and measurement of wealth produced, and instead
to consume just as much as before, if not more.
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Environmental impacts of AI?  (Strubell et al, 2019)

variety of state-of-the-art NLP models

software-based energy measurement

Training

● 12 hours to several weeks
● emissions: between 18kg CO2e and 284 t CO2e
● most used model: 652 kg CO2e, or

○ one one-way flight from Paris to Hong Kong
○ or 2 500km by car

sum GPU time ~ 60 GPU during 6 months



Precision vs CO2e  (Parcollet et Ravanelli, 2021)
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Climate performance model card (Hershcovich et al, 2022)



What can I do (to reduce my carbon footprint) as a ML/AI 
practioner? No

Do you really need to 
use ML/AI?

Ok that was easyDid you choose carefully your model, reduce 
redundant computation, test your program etc?

Choose your facility according to 
PUE & carbon intensity for example

Please do so before training or 
testing a model!

NoYes

NoYes

Track your emissions and 
disclose them

Done

Done

Facilitate comparisons, share 
codes and models

(Ligozat and Luccioni, 2021)



Google’s answer to (Strubell et al., 2019)

Best practices proposed:

● Efficient ML model
● Processors optimized for ML training
● Cloud pour better energy efficiency
● Location with the “cleanest” energy

and «Google's renewable energy purchases 
further reduce the impact to zero»

58

but: 

● what about the life cycle? 
○ recent processors ⇒ carbon footprint ↗

● what about inference?
● «carbon free» energy and «net zero impact»?
● potential carbon footprint if everything optimized, 

but not actual one
● focus on carbon footprint



Decarbonization of energy?



Environmental assessment of projects involving AI methods

● Impacts of ICT equipment
○ material extraction, manufacturing, end of life
○ use: computation, data

● Justification of the AI method
○ nécessity of AI
○ resilience

● Impacts due to societal changes
○ reference scenario
○ potential indirect impacts

60

https://hal.science/hal-03922093

https://hal.science/hal-03922093


Back to AI to tackle climate change



AI for environmental applications

at least with Life Cycle Assessment

taking into account as many indirect effects as possible

Positive impacts from AI use
Negative impacts from AI use
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Life cycle assessment of AI systems

(Ligozat et al, 2021)

Assessing the environmental impacts of an AI 
system should at least include a Life Cycle 
Assessment 

How are AI for Green systems benefits 
assessed?



Evaluations in (Rolnick et al., 2019)



Biases of impact studies (Rasoldier et al., 2022)

Perimeter

● life cycle not taken into account: (Ligozat et al., 2021) for AI
● indirect (2nd and 3rd order) not taken into account: 5G

Hypotheses

● comparison to what reference scenario?

Disconnection from global scenarios

● minimal benefits + poorly managed uncertainties
● incompatibility between measures
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lives saved thanks to 
health measures

Example in the health sector

Conférence Comprendre et Agir -- 
Valérie d'Acremont
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tablet app

climate change

health -

+

+

deaths due to the carbon footprint 
and other environmental issues

https://youtu.be/oKcy_cY0QOw
https://youtu.be/oKcy_cY0QOw


Conclusion

● Comprehensive evaluation of the environmental impacts remains a WIP
● But tools for partial evaluation of 1st order impacts exist and can easily be 

used
● As well as guidelines for a discussion of 2nd and 3rd order impacts

● But be careful with partial indicators
● Need for discussion of the role of AI in a green transition
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